Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron.

نویسندگان

  • Ryan J Cornelius
  • Donghai Wen
  • Lori I Hatcher
  • Steven C Sansom
چکیده

Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When wild type (WT) were placed on HK-alk, but not HK-Cl, renal BK-β4 expression increased (Western blot). When WT and β4KO were placed on HK-Cl, plasma K concentration ([K]) was elevated compared with control K diets; however, K excretion was not different between WT and β4KO. When HK-alk was consumed, the plasma [K] was lower and K clearance was greater in WT compared with β4KO. The urine was alkaline in mice on HK-alk; however, urinary pH was not different between WT and β4KO. Immunohistochemical analysis of pendrin and V-ATPase revealed the same increases in β-IC, comparing WT and β4KO on HK-alk. We found an amiloride-sensitive reduction in Na excretion in β4KO, compared with WT, on HK-alk, indicating enhanced Na reabsorption as a compensatory mechanism to secrete K. Treating mice with an alkaline, Na-deficient, high-K diet (LNaHK) to minimize Na reabsorption exaggerated the defective K handling of β4KO. When WT on LNaHK were given NH(4)Cl in the drinking water, K excretion was reduced to the magnitude of β4KO on LNaHK. These results show that WT, but not β4KO, efficiently excretes K on HK-alk but not on HK-Cl and suggest that BK-α/β4-mediated K secretion is promoted by bicarbonaturia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation between BK-α/β4-mediated potassium secretion and ENaC-mediated sodium reabsorption

The large-conductance, calcium-activated BK-α/β4 potassium channel, localized to the intercalated cells of the distal nephron, mediates potassium secretion during high-potassium, alkaline diets. Here we determine whether BK-α/β4-mediated potassium transport is dependent on epithelial sodium channel (ENaC)-mediated sodium reabsorption. We maximized sodium-potassium exchange in the distal nephron...

متن کامل

Low Na, High K Diet and the Role of Aldosterone in BK-Mediated K Excretion

A low Na, high K diet (LNaHK) is associated with a low rate of cardiovascular (CV) disease in many societies. Part of the benefit of LNaHK relies on its diuretic effects; however, the role of aldosterone (aldo) in the diuresis is not understood. LNaHK mice exhibit an increase in renal K secretion that is dependent on the large, Ca-activated K channel, (BK-α with accessory BK-β4; BK-α/β4). We hy...

متن کامل

BK-{beta}1 subunit: immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion.

Large, Ca(2+)-activated K(+) channels (BK), comprised of alpha- and beta-subunits, mediate K(+) secretion during high flow rates in distal nephron segments. Because the BK-beta1 subunit enhances Ca(2+) sensitivity of BK in a variety of cells, we determined its role in flow-induced K(+) secretion and its localization in the mammalian nephron. To determine the role of BK-beta1 in the kaliuretic r...

متن کامل

Cell-specific regulation of L-WNK1 by dietary K.

Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1),...

متن کامل

Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase.

Large-conductance, Ca(2+)-activated K(+) channels, commonly referred to as BK channels, have a major role in flow-induced K(+) secretion in the distal nephron. With-no-lysine kinase 4 (WNK4) is a serine-threonine kinase expressed in the distal nephron that inhibits ROMK activity and renal K(+) secretion. WNK4 mutations have been described in individuals with familial hyperkalemic hypertension (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 303 11  شماره 

صفحات  -

تاریخ انتشار 2012